Targeted Second-Tier Confirmatory Sequencing NBS Pipeline

Nicole Ruiz-Schultz

Utah Department of Health Newborn Screening Program

Outline

- Next Generation Sequencing (NGS) overview
- NGS pipelines in NBS
- Utah NBS targeted sequencing pipeline
- Variant databases
- Pipeline validation
- Distribution of pipeline
- Significance
- Upcoming work

What is our goal?

Global 2nd tier NGS test

• Our approach: Global method but also gene-specific

Benefit of exome sequencing approach

Overview of NGS pipeline

What are we looking for in NGS analysis?

NGS analysis pipeline – High-level overview

FIGURE 1: Next-generation sequencing bioinformatics workflow.

Dolled-Filhart MP, Lee M, Ou-Yang C-W, Haraksingh RR, Lin JC-H. Computational and bioinformatics frameworks for next-generation whole exome and genome sequencing. ScientificWorldJournal. 2013 Jan;2013:730210.

Publicly available NGS pipelines

- Galaxy docker exome sequencing pipeline <u>https://github.com/bgruening/docker-galaxy-exome-seq</u>
- NGS-Pipe <u>https://github.com/cbg-ethz/NGS-pipe</u>
- bcbio <u>https://github.com/bcbio/bcbio-nextgen</u>
- ngs-easy https://github.com/KHP-Informatics/ngseasy
- Utah Genome Project (UGP) variant pipeline <u>http://weatherby.genetics.utah.edu/UGP/wiki/index.php/UGP_Varian</u> <u>t_Pipeline_1.4.0</u>

Exome capture method

- Illumina Nextera DNA Exome kit
- Sequencing platform: Illumina HiSeq
- Potential issues to troubleshoot
 - Extract enough DNA from dried blood spot
 - Adequate coverage of target genes

Utah NBS sequencing pipeline

- Targeted second-tier sequencing for confirmatory testing
 - Whole-exome sequencing
 - A priori restriction to disease-specific genes
- Why are we choosing this method?
 - Cheaper to sequence entire exome versus using sequencing panels for each disorder (economies of scale)

When will the NGS pipeline run?

 Cystic Fibrosis 1st screen – Abnormal IRT 2nd screen – Abnormal IRT NGS analysis of CFTR gene 	 Hemoglobin disorders 1st screen – Abnormal HPLC 2nd screen – Abnormal HPLC NGS analysis of HBA1, HBA2 genes
 Pompe Disease 1st screen – Low/Absent enzyme activity 2nd screen – Low/Absent enzyme activity NGS analysis of GAA gene 	 MPS I 1st screen – Low enzyme activity 2nd screen – Low enzyme activity NGS analysis of IDUA gene

Sequencing analysis pipeline

NGS sequencing analysis pipeline

Based on GATK Best Practices guidelines

Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinforma. NIH Public Access; 2013;43(1110):11.10.1-33.

Consumer-driven reporting of variants

- Consult with clinicians as to how they would prefer variants to be reported
 - Primary Care Provider Normal/Abnormal
 - Specialist
 - If condition is known
 - Variant
 - Variant classification
 - Example: Pathogenic GAA variant (p.Gly828_Asn882del)
 - If condition is unknown
 - All variant information
 - Text file format (TSV, CSV)
 - Variant Call Format (VCF)

Variant Reporting Formats

• TXT

Sample:	Α					
Variant	s Detected: 1					
Gene	HGVS_g HGVS_	c HGVS_p	Classificat	ion		
GAA	NC_000017.10:	g.78078910d	elT NM_	000152.4:c.525delT	NP_000143.2:p.Glu176Argfs	pathogenic

• VCF

##fileformat=VCFv4.1 ##fileDate=20121203 ##phasing=none						
##reference=file:///u	sr/local/d	lb/homosapien	ns/b37/human_	_g1k_v37.f	asta	
#CHROM POS ID	REF	ALT QUA	L FILTER	INFO	FORMAT	NA12878-NGv3-LAB1360-A
17 78078910	rs38683	34235 CT	С	6516.01	PASS	AB=0.82392;ABHom=0.878;ABP=277.33;AC=2;AF=1.00;AN=2;AO=248;BVAR;BaseQRankSum=4.243;CIG
AR=1X;DB;DP=246;DPRA=	0;DS;Dels=	=0.00;EPP=7.2	.4817;EPPR=8.	37251;HRu	n=1;HWE	=-0;HaplotypeScore=4.2298;LEN=1;MEANALT=5;MLEAC=2;MLEAF=1.00;MQ=45.81;MQ0=0;MQM=43.3548
;MQMR=23.5306;MQRankS	um=5.543;N	IS=1;NUMALT=1	;0DDS=110.98	33;OND=0.1	29;PAIR	ED=1;PAIREDR=1;QD=26.27;RO=49;RPP=64.7922;RPPR=92.7497;RUN=1;ReadPosRankSum=2.824;SAP=5
0.9578;SB=-2.514e+03;	SRP=12.981	L3;TYPE=snp;V	QSLOD=1.3662	2;XAI=0.00	0257697	;XAM=0.0204421;XAS=0.0201844;XRI=0;XRM=0.00535366;XRS=0.00535366;culprit=QD;set=gatk-fr
eebayes;technology.il	lumina=1	GT:AD:DP:GQ	e:PL 1/1:30,	216:246:9	9:6516,	124,0

Ideas on NBS variant database

- Variant database for newborn screening
- Community solution
- Cost-free solution
- Community organization requirement

Building the local variant database

- Allows for easier, faster querying of variants
- Creating a MySQL database using medgen-mysql
- Populate using data from:
 - ClinVar
 - Human Gene Mutation Database (HGMD)
 - dbSNP
 - Exome Aggregation Consortium (ExAC)
 - Genome Aggregation Database (gnomAD)
 - Locus Specific Databases (LSDBs)
 - CFTR2
 - Pompe Disease Mutation Database

Potential problems with variant database curation

- Which databases should we use?
- Is the data current?
- Are there conflicting interpretations of the same variant in different databases? How can we resolve these conflicts?
 - ClinVar Miner

Re-evaluation of variants

- Variants of unknown significance (VUS)
- How often should our local database be updated?
 - Plan on updating as often as databases provide new releases
- What if the clinical interpretation of a variant changes?
 - Plan on re-evaluating patient variants every 6 months
 - Update LIMS to re-query VUSs and generate updated reports

Pipeline Validation

- Gene/Disease-specific validation
 - CFTR/CF
 - GAA/Pompe
 - ACADVL/VLCAD
- Validation of entire pipeline from sample to sequence
- Validation with third-party data

Distribution of pipeline

• Command-line version of pipeline

• Graphical User Interface (GUI) version of pipeline

https://hub.docker.com/r/tplcom/docker-presentation/ https://shiny.rstudio.com/

GUI development for gene-specific restriction

Cystic Fibrosis	A
newborn_reads1fasta	
newborn_reads2.fastq	es

Why is this important? - Case Study

- Full-term apparently healthy baby girl, unremarkable family history; healthy older sibling
- First screen: absence of TREC, nearly undetectable
- Flow cytometry: T- NK+B+ SCID
- SCID targeted 19 gene panel: heterozygous mutation on FOXN1 c.1418dleC:p.P473fs
- Bone Marrow transplant at 3.5 months
- At 2 years old, Flow cytometry still abnormal; transplant not successful

FOXN1

- Variant not found in ExAC database, not reported in the literature
- Reported FOXN1 phenotype: congenital alopecia, nail dystrophy, absent thymus (requires thymic transplant)
- Normally autosomal recessive disorder (patient heterozygous)
- Incomplete penetrance reported: mild finger nail defects found in heterozygotes
- No nail or hair defects found in patient or family members, thymus present in patient
- Is Genetic cause determined in patient?
- Genomic sequencing of family: brother and father had same mutation as patient
- TREC retrospectively tested on brothers newborn screen specimen (State of birth was not screening at the time); TREC was 0

FOXN1 p.P473fs

Case Study - Summary

- Heterozygous mutation in *FOXN1* likely cause of T-cell lymphopenia early in life that is asymptomatic
- Close follow-up recommended; treatment likely not required
- Patient had thymus transplant: transplant conditioning damages the thymus preventing normal T cell development

Sync for Genes phase 2 pilot site

• Sync for Genes Aim

- Leverage Health Level 7 Fast Healthcare Interoperability Resources (HL7 FHIR) infrastructure for communicating information from clinical genomic labs in a format for universal use across medicine
- Utah Newborn Screening Program Aim
 - Enable electronic transfer of abnormal screening results to healthcare providers to reduce turnaround time for time-sensitive results to ultimately improve patient care

Request from the community

- Data
- Biological specimens
- Contribution towards development of shared repositories

Acknowledgements

Utah Department of Health Newborn Screening Program

- Andy Rohrwasser
- Kim Hart
- Mary Rindler
- David Jones

Utah Department of Health Infectious Disease

• Kelly Oakeson

University of Utah

- Karen Eilbeck (Biomedical Informatics)
- Mark Yandell (Human Genetics)
- Barry Moore (Human Genetics)
- Shawn Rynearson (Human Genetics)