Confirmatory Testing Following a Positive SCID Newborn Screen

Francisco A. Bonilla, MD, PhD
Boston Children's Hospital
Harvard Medical School

Disclosures

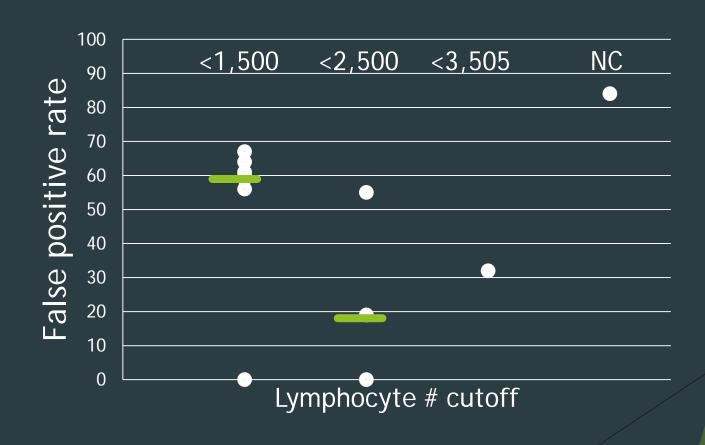
- Albany Medical College
 - ☐ Honorarium
- □ Baxter, Inc.
 - Consultant
- □ The Cowen Group, Inc.
 - Consultant
- CSL Behring, Inc.
 - Consultant, research support
- ☐ Gerson-Lehrman Group, Inc.
 - Consultant

- Grand Rounds Health
 - Consultant
- ☐ Immune Deficiency Foundation
 - Medical Advisory Board
 - Consultant Immunologist Program
- Octapharma, Inc.
 - Data safety monitor
- UpToDate in Medicine
 - Royalties

Following up an abnormal SCID newborn screen

- Assumptions:
 - ► The level of TRECs is below the laboratoryspecific cutoff
 - Quality control indicates a valid result

- Secondary screen
 - ▶ Total T cell number
 - Proportion of naïve T cells


Secondary screen: T cell number

No well-established normal ranges of absolute counts for first 1-7 days of life for term or premies

Shearer et al.	Comans-Bitter et al		
0-3 months, n = 700	Newborn, n = 20	2-5 months, $n = 46$	
90th %ile - 5,500	95 th %ile - 5,000	6,500	
Median - 3,700	2,800	3,600	
10th %ile - 2,500	5 th %ile - 600	2,300	

- ▶ Shearer et al., J Allergy Clin Immunol 2003; 112:973
- ► Comans-Bitter et al., J Pediatr 1997; 130:388
- State laboratory-specific lower limits vary between 1,500-3,505 cells/mm³

Secondary screen: T cell number

Data from Kwan et al., JAMA 2014; 312:729

Secondary screen: Naïve T cells

- Spurious normal total T cell count due to:
 - Engraftment and expansion of maternal T cells
 - Autologous oligo/pauciclonal T cell expansion (Omenn's syndrome)
- In both cases, engrafted or expanded cells are not naïve
- ▶ Naïve cells CD45RA+ or CD45RO-
- Additional markers sometimes used but not essential here
- CD4 and CD8 populations may be measured separately, also not essential

Secondary screen: Naïve T cells

CD4/CD45RA	CD8/CD45RA	
90th %ile - 95%	99%	
Median - 90%	93%	
10th %ile - 64%	80%	

Shearer et al., J Allergy Clin Immunol 2003; 112:973

- Convenient lower limit 50%
- Not applied in all screening programs

Tertiary screen: T cell function

- Assumptions
 - ► T cell lymphopenia by laboratory-specific criteria
 - ▶ OR
 - Low proportion of naïve T cells, if applied
- Refer for testing of T cell function (preferably with clinical consultation)
- Gold standard: in vitro T cell proliferation to stimulation with phytohemagglutinin (PHA) by incorporation of ³H
- Clinical consultation should be considered for any significant abnormality of lymphocyte populations, even if T cell lymphopenia is not present

SCID PIDTC definitions

- Primary Immunodeficiency Treatment Consortium
- Typical SCID
 - Autologous T cells <300 cells/mm³ AND</p>
 - T cell proliferation <10% of a healthy control (or <10th %ile of controls for the lab)
 - Maternal T cell engraftment
 - Known SCID-associated mutations
- "Leaky" SCID
 - Autologous T cells between 300-1,500 cells/mm³, low proportion of naïve cells
 - T cell proliferation between 10-50% of normal
 - ► Incomplete/hypomorphic mutations in SCID genes

SCID PIDTC definitions

- Omenn syndrome
 - ▶ T cell number low or normal, oligoclonal
 - ▶ T cell proliferation 10-50% of normal
 - Erythroderma, hepatosplenomegaly, eosi nophilia, and elevated levels of serum lgE
- Generally occurs with SCID gene mutations but can be seen in other settings

Outcomes of SCID newborn screening

- T cells above cutoff, naïve proportion OK, no other lymphocyte abnormalities > no further evaluation
- T cells above cutoff, naïve proportion OK, yes other lymphocyte abnormalities
 - ► Follow clinically, consider further evaluation
- ► T cells below cutoff or naïve proportion not OK, function >50% normal
 - ▶ Follow clinically, consider further evaluation (DGS, T21)
- T cells below cutoff or naïve proportion not OK, function < 50%
 - Evaluate for leaky SCID or other defect
 - T cells <300 or naïve proportion not OK, function <10%
 - > SCID!

Non-SCID T cell lymphopenia

Syndromes with	T-cell
impairment	136

- ▶ DiGeorge 78
- ► Trisomy21 21
- ► A-T 4
- ► Trisomy18 4
- ► CHARGE 3
- ▶ Jacobsen 2
- ► CLOVES 1
- ► ECC 1
- Fryns 1
- Nijmegen ´
- ► Noonan
- Rac2 defect 1
- Renpenning

- ► TAR 1
- Not specified 10
- Cytogenetic 6
- Secondary 117
 - ► Cardiac anom. 30
 - ▶ Mult. Congen. 23
 - ▶ 3rd space 15
 - ► GI anom. 15
 - ▶ Neonatal leuk. 4
 - ▶ Not specified 30
- Preterm birth 29
- Variant SCID 12
- Unspecified T-cell lymphopenia

Data from Kwan et al., JAMA 2014; 312:729

Non-SCID T cell lymphopenia: Testing

- Karyotype
 - Major chromosomal abnormalities
 - Trisomy 21
 - Trisomy 18, etc.
- SNP or hybridization array
 - DiGeorge syndrome (focused analysis on 22q11)
 - Other microdeletion
 - Often useful in conjunction with targeted or whole exome/genome sequencing

Non-SCID T cell lymphopenia

- Ataxia-telangiectasia
 - Characteristic manifestations do not appear for months/years
 - Screening via alpha fetoprotein unreliable in first year of life
 - Consider for testing (chromosome fragility, Western blot or DNA analysis) in all possible cases, especially if there is also B cell lymphopenia

- ► CHARGE
 - ► CCHD7
- Nijmegen breakage syndrome
 - ► NBS1
- Rac2 deficiency
 - ► RAC2
- biochemical and/or genetic tests based on clinical features and laboratory phenotype

SCID/leaky SCID: Gene defects

T-B+ SCID		T-B- SCID		
IL-2R common gamma	IL2RG	Recombinase activating	RAG1	
chain	IL2KG	genes 1 and 2	RAG2	
Janus kinase 3	JAK3	DNA cross-link repair	DOI DE40	
IL-7R α chain	IL7RA	enzyme 1C (Artemis)	DCLRE1C	
IL-2R alpha chain (CD25)		DNA-dependent protein		
deficiency	IL2RA	kinase	PRKDC	
CD45 (protein tyrosine		Adenylate kinase 2		
phosphatase, receptor	PTPRC	(reticular dysgenesis)	AK2	
type, C)		Adenosine deaminase	ADA	
CD3 δ	CD3D	DNA ligase IV	LIG4	
CD3 ε	CD3E	Non-homologous end-		
CD3 ζ	CD3Z	joining protein 1	NHEJ1	
Coronin 1A	CORO1A	(Cernunnos)		

SCID/leaky SCID: Genetic testing

- Next generation sequencing panels available from reference genetics laboratories
 - ▶ All SCID or segregate by T-B+, T-B-
 - Focused Sanger sequencing of a small number of candidate genes
- If all known genes and CGH/SNP array tests are unrevealing, consider whole exome or genome sequencing